

Welcome to this Deconvoluted documentation!

Contents:

	Deconvoluted
	Features

	Installation
	Stable release

	From sources

	Usage

	Deconvoluted Examples
	1D Fourier transform

	2D Fourier transform

	Module Documentation
	deconvoluted.tranforms

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.1 (2019-06-05)

	0.1.0 (2019-06-03)

Indices and tables

	Index

	Module Index

	Search Page

Deconvoluted

[image: _images/deconvoluted.svg]
 [https://pypi.python.org/pypi/deconvoluted][image: _images/deconvoluted1.svg]
 [https://travis-ci.org/tbuli/deconvoluted][image: Documentation Status]
 [https://deconvoluted.readthedocs.io/en/latest/?badge=latest]Deconvoluted makes performing numerical integral transforms simple and pythonic!

	Free software: MIT license

	Documentation: https://deconvoluted.readthedocs.io.

Features

Fourier Transforms

As a first example, let’s perform a Fourier transform:

t = np.linspace(0, 10, 201)
f = np.sin(3 * 2 * np.pi * t)
F, nu = fourier_transform(f, t)

By default, Fourier transforms use Fourier coefficients \(a=0\),
\(b=-2\pi\). Using another convention is simple:

F, omega = fourier_transform(f, t, convention=(-1, 1))

As a physicist myself, I therefore switch the labelling of the output from
\(\nu\) for frequency, to \(\omega\) for angular frequency.

Performing multidimensional transforms is just as easy. For example:

F_pq, p, q = fourier_transform(f_xy, x, y)

transforms both \(x\) and \(y\) at the same time.
Transforming only one of the two variables can be done simply by setting those
that shouldn’t transform to None:

F_py, p = fourier_transform(f_xy, x, None)
F_xq, q = fourier_transform(f_xy, None, y)

See the documentation for more examples!

Installation

Stable release

To install Deconvoluted, run this command in your terminal:

$ pip install deconvoluted

This is the preferred method to install Deconvoluted, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Deconvoluted can be downloaded from the Github repo [https://github.com/tbuli/deconvoluted].

You can either clone the public repository:

$ git clone git://github.com/tbuli/deconvoluted

Or download the tarball [https://github.com/tbuli/deconvoluted/tarball/master]:

$ curl -OL https://github.com/tbuli/deconvoluted/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Deconvoluted in a project:

import deconvoluted

Deconvoluted Examples

Contents:

	1D Fourier transform

	2D Fourier transform

1D Fourier transform

[]:

import numpy as np
import matplotlib.pyplot as plt

from deconvoluted import fourier_transform

Suppose we want to compute the 1D fourier transform \(F(\nu)\) of a function \(f(t)\). Let us generate a signal which is a superposition of a signal with \(\nu_1 = 1\) Hz and \(\nu_2 = 3\) Hz:

[9]:

t = np.linspace(0, 20, 201) # 20 seconds
nu_1 = 1
nu_2 = 3
f_t = np.sin(nu_1 * 2 * np.pi * t) + np.sin(nu_2 * 2 * np.pi * t)

plt.plot(t, f_t)
plt.xlabel(r't / s')
plt.ylabel(r'$f(t)$')
plt.show()

[image: ../_images/examples_fourier_1d_3_0.png]

Taking the transform is now simply a matter of calling fourier_transform:

[10]:

F_nu, nu = fourier_transform(f_t, t)

[11]:

plt.plot(nu, F_nu)
plt.xlabel(r'ν / s^{-1}')
plt.ylabel(r'$F(\nu)$')
plt.show()

[image: ../_images/examples_fourier_1d_6_0.png]

As expected, we find resonances at \(\nu_1 = 1\) Hz and \(\nu_2 = 3\) Hz.

We could also perform the transform using angular frequency instead:

[12]:

F_omega, omega = fourier_transform(f_t, t, convention=(1, -1))

[13]:

plt.plot(omega, F_omega)
plt.xlabel(r'ω / rad s^{-1}')
plt.ylabel(r'$F(\omega)$')
plt.show()

[image: ../_images/examples_fourier_1d_10_0.png]

Now our resonances are at \(\omega_1 = 2 \pi\) and \(\omega_2 = 6 \pi\) instead.

2D Fourier transform

[10]:

import numpy as np
import matplotlib.pyplot as plt

from deconvoluted import fourier_transform

Suppose we want to compute the 2D fourier transform \(F(p, q)\) of a function \(f(x, y)\). Let us generate some data which has a frequency of \(0.2\) Hz in the \(x\) direction, and \(0.1\) Hz in the \(y\) direction:

[11]:

x = np.linspace(-20, 20, 41)
y = np.linspace(-10, 10, 21)
X, Y = np.meshgrid(x, y)
f_xy = np.sin(0.2 * 2 * np.pi * X + 0.1 * 2 * np.pi * Y)

plt.imshow(f_xy, extent=(x.min(), x.max(), y.min(), y.max()))
plt.show()

[image: ../_images/examples_fourier_2d_3_0.png]

Taking the transform is now simply a matter of calling fourier_transform:

[12]:

F_pq, p, q = fourier_transform(f_xy, x, y)

[13]:

plt.imshow(F_pq.real, extent=(p.min(), p.max(), q.min(), q.max()))
plt.show()

[image: ../_images/examples_fourier_2d_6_0.png]

We see two resonances, exactly where we would expect them!

Module Documentation

This page contains documentation to every Deconvoluted tool.

deconvoluted.tranforms

	
deconvoluted.transforms.determine_axes(f, *vars)

	Determine the axes along which the FT should be performed.

	
deconvoluted.transforms.determine_norm(convention)

	Determine the normalization constant for this convention.

	Parameters

	convention – tuple representing \((a, b)\).

	Returns

	normalization constant.

	
deconvoluted.transforms.fourier_transform(f, *vars, convention=Convention(a=0, b=-6.283185307179586))

	Performs the multidimensional Fourier transform of
\(f(x_1, \ldots, x_n)\) with respect to any number of variables
\(x_i\).

Examples:

1D transform
F, k = fourier_transform(f, x)

2D transform
F_pq, p, q = fourier_transform(f_xy, x, y)

2D function, transform only 1 axis
F_py, p = fourier_transform(f_xy, x, None)

	Parameters

	
	f – array representing a function \(f(x_1, \ldots, x_n)\)

	vars – list of \(x_i\) w.r.t. which the Fourier transform has to
be computed. In case of multi-dimensional functions \(f\) the
number of vars has to match the dimension of f. Any axis that
should be ignored should be provided as None:

F_py, p = fourier_transform(f_xy, x, None)

	convention – The Fourier convention to be used. \(a=0\) and
\(b=- 2 \pi\) by default, which is the signal processing standard.

	Returns

	\(F(k_1, \ldots, k_n)\), the Fourier transform of
\(f(x_1, \ldots, x_n)\).

	
deconvoluted.transforms.inverse_fourier_transform(F, *vars, convention=Convention(a=0, b=-6.283185307179586))

	Perform an inverse Fourier transform. See
deconvoluted.transforms.fourier_transform() for more info.

	Parameters

	
	F – Fourier transform \(F(k_1, \ldots, k_n)\)
of \(f(x_1, \ldots, x_n)\).

	vars – Any number of \(k\) variables or None.

	convention – The Fourier convention to be used. \(a=0\) and
\(b=- 2 \pi\) by default, which is the signal processing standard.

	Returns

	\(f(x_1, \ldots, x_n)\), the inverse fourier transform of
\(F(k_1, \ldots, k_n)\)

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/tbuli/deconvoluted/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Deconvoluted could always use more documentation, whether as part of the
official Deconvoluted docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tbuli/deconvoluted/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up deconvoluted for local development.

	Fork the deconvoluted repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/deconvoluted.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv deconvoluted
$ cd deconvoluted/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 deconvoluted tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6 and 3.7, and for PyPy. Check
https://travis-ci.org/tbuli/deconvoluted/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_deconvoluted

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Martin Roelfs <martin.roelfs@kuleuven.be>

Contributors

None yet. Why not be the first?

History

0.1.1 (2019-06-05)

	Implemented support for different FT conventions.

0.1.0 (2019-06-03)

	First release on PyPI.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deconvoluted	

 	
 	
 deconvoluted.transforms	

Index

 D
 | F
 | I

D

 	
 	deconvoluted.transforms (module)

 	
 	determine_axes() (in module deconvoluted.transforms)

 	determine_norm() (in module deconvoluted.transforms)

F

 	
 	fourier_transform() (in module deconvoluted.transforms)

I

 	
 	inverse_fourier_transform() (in module deconvoluted.transforms)

 _static/up-pressed.png

_static/up.png

_images/examples_fourier_1d_10_0.png
Fw)

wirads™

B

_images/examples_fourier_1d_3_0.png
1ty

15

10

05

o0

25

50

75

100
s

s

150

s

ED)

_images/examples_fourier_2d_6_0.png

_images/examples_fourier_1d_6_0.png
Av)

vis

_images/examples_fourier_2d_3_0.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to this Deconvoluted documentation!

 		
 Deconvoluted

 		
 Features

 		
 Fourier Transforms

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Deconvoluted Examples

 		
 1D Fourier transform

 		
 2D Fourier transform

 		
 Module Documentation

 		
 deconvoluted.tranforms

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.1 (2019-06-05)

 		
 0.1.0 (2019-06-03)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

